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The fully viscous hydrodynamic stability equations for a round laminar vertical 
jet have been numerically solved using the proper boundary-layer base-flow 
velocity profile and for both symmetric and asymmetric disturbances. The 
symmetric mode is found to be unconditionally stable. The first asymmetric 
mode is found to be unstable and characteristics are compared with previous 
calculations. The computed critical Reynolds number for this mode is 9.4, which 
agrees with the calculations of Burridge (1968). Disturbance amplitude-ratio 
contours are also calculated and related to the convection of disturbances in the 
flow. 

The effect of thermal buoyancy on jet stability is assessed by solving the fully 
viscous equations, coupled through buoyancy, and using a buoyancy-perturbed 
jet flow. A Prandtl number v of 6.7 is used, and positive thermal buoyancy is 
found to have a destabilizing effect. Stability characteristics for the limiting case 
of buoyancy, a purely thermal point-source plume, are determined for a Prandtl 
number of 2. 

Finally, an experiment was performed using water jets in water (u fi: 4.52- 
5.89) and a new method of jet production is described. The effect of varying 
amounts of thermal buoyancy on the laminar length of a jet undergoing naturally 
occurring transition wa.s determined experimentally. These experiments confirm 
the calculated destabilizing effect of buoyancy. An empirical correlation is pre- 
sented for the laminar length of a jet. Also, the effect of both symmetric and 
asymmetric artificially induced disturbances was determined experimentally. 
The disturbance amplitude ratio at  which transition to turbulence takes place is 
found to be much less than for buoyant flows adjacent to a wall. The effects of 
frequency and amplitude of the artificial disturbances were experimentally 
determined and the trends are found to be consistent with the results of small 
disturbance theory. 

The principal new result is that positive thermal buoyancy destabilizes jet 
flow, and consequently calls into question earlier experimental studies wherein 
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jet flows were observed by density differences. Another new result is the calcula- 
tion. of amplitude-ratio contours for a non-buoyant jet and the quantitative 
description of jet stability in terms of these contours along paths of constant 
physical frequency. A comparison of the non-buoyant theory with experimental 
jets containing varying amounts of thermal buoyancy indicates that transition 
did not occur at  a well-defined value of the amplitude ratio. Perhaps experiments 
with truly non-buoyant jets and/or more detailed buoyant calculations could 
explain this remaining question. 

1. Introduction 
Jet  stability and transition are important questions. Because of the large 

difference between laminar and turbulent transport characteristics, it  is of great 
practical importance to know the conditions when one might expect each of 
these flow regimes. In  technological processes one may wish to preserve the 
laminar nature of a jet for control purposes, or to induce turbulence for more 
vigorous transport, In  addition, knowledge of the transition process may lead 
to the understanding of the mechanisms of related phenomena in some of the 
environmental flow configurations of recently increased importance. 

Schlichting (1933) first calculated the velocity field for a round laminar jet 
using boundary-layer approximations. Landau (1943; see Landau & Lifshitz 
1959) presented a solution which did not rely on these approximations. Neither 
analysis considered thermal diffusion. A solution for the uncoupled temperature 
field was given by Squire (1951) in a treatment nearly identical to that of Landau. 

The effects of small amounts of thermal buoyancy in round laminar vertical 
jets has been investigated by Mollendorf & Gebhart (1973). The predominant 
effect of thermal buoyancy was found to be a change in the axial velocity com- 
ponent and a thinning of the jet. These calculated effects of buoyancy are used 
in the coupled part of the present stability analysis. 

The stability, vortex-ring formation and transition to turbulence of Pfeifenton 
(pipe tone) jets was studied by Anderson (1954, 1955, 1956). The experimental 
set-up used was a gin. orifice discharging CO, gas into air. A shadow graph was 
used to observe the flow and many beautiful pictures were presented. He deter- 
mined the dependence of frequency on Reynolds number over a range of Re, from 
0 to 7000. The Reynolds number Re, was calculated from physical conditions at 
the nozzle exit and the observed frequencies ranged from 880 to 6370Hz. 
Although these jets were buoyant, no attempt was made to assess the effect of 
buoyancy on jet stability. 

The first data known to us concerning the Reynolds number at  which an axi- 
symmetric jet becomes unstable were taken by Schade in 1958. The work is 
apparently unpublished, but the results are mentioned by Batchelor & Gill 
(1962). Schade apparently found that steady, laminar liquid-into-liquid jets 
could be obtained up to Reynolds numbers Re, of several hundred. No definite 
critical Reynolds number was found. An experimental determination of the 
minimum Reynolds number for instability in a round jet was reported by Viilu 
(1962). Very small diameter (0.0052-0.018 in.) water-into-water jets were 



Viscous stability of a round vertical laminar j e t  369 

observed using a ‘sodium hydroxide, phenolthalene, hydrochloric acid ’ visualiza- 
tion technique. The Reynolds number Re, for instability was found to be 
between 10.5 and 11.8. The discrepancy between the data of Schade and Viiluled 
Reynolds (1962) to investigate this problem further. Small diameter (0.0126 in.) 
dyed water jets were driven by a constant-head device into clear water. The 
velocity wm calculated by measuring the mass flow rate of water emitted by the 
jet. The results indicated four modes of flow and instability, defined by ranges of 
the Reynolds number Re,. For 10 < Re, < 30 it was dZ6cult to maintain a long 
steady jet. For 30 < Re, < 150 the jets were longer. For 150 < Re, < 300 still 
longer jets were possible, but complex breakdown occurred. For Re, > 300 the 
flow was predominately disordered even near the nozzle. In addition, spon- 
taneous symmetric patterns were seen well away from the nozzle. These were 
called ‘ condensations ’. Apparently, under certain conditions the condensations 
passed through one another in the manner of smoke rings. 

Although there have been many studies concerning the stability of plane jets, 
the first analytical treatment of the axisymmetric ones was given by Batchelor 
& Gill. Linear, small disturbance theory was used with postulated disturbance 
amplitude growth, neutrality or attenuation with time. The analysis allowed for 
azimuthal [O in figure 1 and in equations (7)-( 1 l)] variations in the disturbance 
amplitude by including an azimuthal wavenumber n ( = 0,1,2, .. .). The case 
n = 0 can be thought of as a periodic local symmetric pulsing of the jet. For n = 1 
there is a COSO variation in the disturbance magnitude. This is the first asym- 
metric mode. The flow appears to slosh locally but the disturbance to the motion 
amounts to a twisting fluted shape which moves downstream. It is like a turning 
screw which may slip (in x). Higher values of n result in more fluting. 

Batchelor & Gill proved the existence of amplified disturbances for any value 
of the azimuthal wavenumber n for a ‘top-hat ’, i.e. uniform, velocity profile. For 
Schlichting’s velocity distribution, ampiif- disturbances were found only for 
n = 1. They also solved the inviscid Orr-Sommerfeld equation for the ‘ top-hat ’ 
profile. The eigenfunctions are given by a linear combination of modified Bessel 
functions of the ikst and second kind, and the flow is unstable to  small disturb- 
ances for all values of n and the axial wavenumber a. For Schlichting’s profile 
(with a normalization different from that used here) and n = 1 the non- 
dimensional wavenumber a for neutral inviscid disturbances was found to be 1.46. 
This should perhaps be the limit at  large Reynolds number for the upper branch 
of a neutral curve calculated including viscous effects. 

The apparent contradiction between the observation of symmetric disturb- 
ances by Reynolds and the theory of Batchelor & Gill (i.e. the prediction of 
analysis that the flow is not unstable to symmetric disturbances) was investi- 
gated by Gill (1962). Gill’s analysis indicated that symmetric disturbances do not 
grow in a slightly viscous fluid, but suggested that the growth of small but finite 
disturbances may be responsible for the condensations observed by Reynolds. 
A solution wa8 given for disturbances of finite amplitude. Gill suggested that the 
agreement of his results with Reynolds’ observations is due to the presence of 
appreciable background disturbances in the experimental apparatus of 
Reynolds. 

24 FLM 61 
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Motivated by chemical reactor design considerations, McNaughton & Sinclair 
(1966) studied the flow of water through cylindrical vessels with an axial inlet and 
outlet, using a methylene blue dye-tracer. The inlet Reynolds number Re, 
ranged from 100 to 28 000. In  the lower range of Reynolds numbers they observed 
the same modes of breakdown as Reynolds. In  addition, they presented an 
empirical relationship for the laminar length of a subturbulent jet as a function of 
the inlet Reynolds number, the diameter of the jet and the length and diameter 
of the flow vessel. It is interesting that they also stated that a small difference 
between the densities of the jet fluid and that in the vessel considerably affects the 
behaviour of the jet, They found that buoyancy thinned the jet in accordance 
with our results. 

Becker & Massaro (1968) used air jets from a t in .  diameter nozzle and covered 
a Reynolds number range Re, = 600-20 000. Eight regimes of breakdown were 
suggested. By employing smoke photography, stroboscopic observation and a 
light-scatter technique (using both general illumination and sheet illumination 
through a slit) they correlated (with Reynolds number) such things as the 
formation of vortex rings, the coalescence of ring vortex pairs and the eventual 
disintegration into turbulent eddies. They investigated acoustic excitation and 
also discussed the effects of different nozzle configurations. 

In  an attempt to understand better the mechanisms of air pollution by 
chimney dispersal, Vignes (1968) studied vertical gaseous jets. She measured the 
maximum height attained by jets for several different heavier-than-air effluents. 
Nozzle diameters of 1.18in. and less were used with flow conditions at  Froude 
numbers of 160 and less. Her work deals with laminar jets and the density differ- 
ences were larger than those of previous investigators. The jets were observed 
optically and their maximum height was measured with a hot-wire-grid device. 
It was shown that the maximum height is proportional to the Froude number for 
laminar jets and for jets experiencing transition. The constant of proportionality 
was found to depend on the gas used. The effect of the shape of the nozzle was also 
investigated. The penetration height was significantly higher for converging than 
for diverging nozzles, but was relatively insensitive to the angle of convergence 
or divergence. 

Kambe (1969) reported the third? analysis concerning the stability of round 
jets. By assuming a parabolic axial velocity distribution in the jet, with a slope 
discontinuity around the edge, he was able to find analytical solutions of the 
uncoupled linearized stability equations for the disturbance forms n = 0, 1 and 2. 
He used the procedure of Batchelor & Gill for the ' top-hat ' profile and postulated 
the same disturbance forms. Results for n = 1 and 2 were given as plots of the 
dimensionless wavenumber cx vs. aR, where R is a momentum-flux parameter for 
various values of the complex wave speed. Both inviscid and viscous flow were 
analysed. For a symmetric disturbance (n = 0 )  the flow was found to be stable. 
For the inviscid case and n 4 0 he suggested (after a partial investigation) that 
the flow is unstable for all non-zero n. Finally, for viscous flow and n $. 0 the 

t The review of the present work revealed a study by D. M. Burridge, at Bristol, who 
calculated the critical Reynolds number to  be 9-4 for tt non-buoyant jet in 1968. 
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critical Reynolds numbers were calculated to be RK = 32.8 and 171 for n = 1 and 
n = 2, respectively (RK is the Reynolds number used in this study). The assumed 
flow is not related to a physical circumstance. However, if the profile satisfies 
a momentum-flux condition, then RK = RB = 4R, where RB is the Reynolds 
number Batchelor & Gill used and R is the momentum-flux parameter to be used 
later here. Although the assumed parabolic velocity distribution is a good repre- 
sentation of the boundary-layer distribution near the axis of symmetry, it  fails 
further out. In  addition, it has the discontinuity noted above. Inflexion points are 
known to be very important in instability modes in other flows. This dis- 
continuity may be very important. 

Motivated by design considerations in fluidic devices (such as turbulence 
amplifiers), Marsters (1969) studied transition of small free jets. Carbon dioxide 
jets issuing from small (0.035-0.087 in.) nozzles into room temperature air were 
observed using a double-pass schlieren system. The principal result of this study 
is an empirical formula for the length L at which a laminar jet undergoes 
transition to turbulence, the so-called laminar length. A curve of the form 
L/D = AReg provided a good correlation. Note that Re, = qD/v ,  where D is the 
diameter of the jet at the nozzle exit and J$ and v are the jet velocity andviscosity 
a t  the nozzle exit. The values of A and B were los and - 2.30, respectively, for 
ReD < 2300. A buoyancy effect parameter GrD,,,/Reg was calculated to be 
2 x 10-4, where GrD ,, E gD3(pj - p,)/pj v2, and it was concluded that buoyant 
effects were small for the conditions of the experiments. 

Another experimental investigation of laminar length was reported by 
McKenzie & Wall (1968). They also studied the effect of the interaction of two 
jets on laminar length for various conditions. However, their results for the 
undisturbed laminar length for a single jet differ considerably from those of 
Marsters. The constants A and B were found to be lo3 and - 1 for the low range 
of Reynolds numbers and L/D at which they observed transition. These two 
results are seen in figure 10. This latter work lacks adequate documentation but 
it appears that the jets studied may have been subject to large buoyancy effects. 
This question is discussed later in the light of our own experimental results. 

In  a detailed study by Crow & Champagne (1971), controlled disturbances were 
introduced at  the nozzle exit of a free turbulent jet. They found that maximum 
amplification occurred at an imposed disturbance Strouhal number of 0-30. They 
also observed that the naturally occurring transition from sinous to pulsatile 
instability (at lower Reynolds numbers) was smooth and more continuous than 
that reported by Reynolds. They explain this difference by suggesting that the 
Reynolds vertical dye jet may have been slightly buoyant. 

This summary of past work indicates that two different points of view have 
arisen in considering the stability and transition to turbulence of laminar jets. 
One (Marsters 1969) asks the question: a t  what distance downstream does a 
laminar jet undergo transition to turbulence ? The other, linear stability theory 
(Batchelor & Gill 1962; Kambe 1969), postulates a small disturbance and asks the 
question: does it grow, attenuate or remain unaffected in its interaction 
with the jet ‘1 

The ‘laminar-length’ picture presupposes that the jet will become unstable 
24-2 
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X 

FIGURE 1. Cylindrical co-ordinate system for an axisymmetric jet. 

somewhere downstream. Therefore, it concerns only jets which undergo transi- 
tion before they effectively die out because of outward momentum diffusion. 
Stability-theory treatment also deals with jets which may be completely stable. 
We shall see later that our extensive stability-theory results, interpreted as 
a spacewise (x) amplitude growth, are consistent with the interpretation of jet 
transition in terms of laminar jet length. This provides the bridge between the 
two points of view. 

The above summary indicates the principal things known about the stability 
and transition of axisymmetric laminar jets. The full viscous stability equations 
have apparently not been extensively treated for the velocity profile calculated 
by Schlichting. Furthermore, there has been no attempt to assess the effects of 
thermal buoyancy on stability, either in analysis or in experiment. Extensive 
previous study of two-dimensional natural convection flows adjacent to vertical 
and horizontal surfaces and in plumes has shown that ‘buoyancy coupling’ often 
has a very large effect on stability. 

This study of round jets determines non-buoyant stability, including viscous 
effects and the use of the boundary-layer solution for the base flow. Then the 
effects of thermal buoyancy on stability are considered. This analysis uses our 
previous results (Mollendorf & Gebhart 1973) concerning the effect of a small 
amount of thermal buoyancy on the jet flow. 
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We first present the general coupled conservation equations. Disturbance 
equations are generated, disturbance forms are assumed and the appropriate 
boundary conditions are determined. Then numerical solutions axe given for both 
the coupled and uncoupled full Orr-Sommerfeld equations for symmetric (n = 0 )  
and for the more important asymmetric (n = 1) forms of disturbances. 

Since the non-dimensional velocity and temperature base-flow profiles are 
identical for the non-buoyant jet and the axisymmetric thermal plume (for a 
Prandtl number of two), hydrodynamic stability results are presented for a 
purely buoyant axisymmetric plume subject to asymmetric (n = 1) disturbances 
for this Prandtl number. The governing equations are discussed in appendix A 
and the resulting neutral curve is shown on figure 8 with the various jet results. 
Plume stability results for other Prandtl numbers will appear in the future. 

Finally, an experimental programme is described and comparison is made 
between experimentally measured and analytically predicted jet stability 
characteristics. 

2. Analysis 
2.1. The stability equations 

The equations expressing the conservation of mass, momentum and energy are 
written in the cylindrical form most convenient for the flows considered here, as 
shown in figure 1. The Boussinesq approximation is incorporated and constant 
viscosity v and thermal diffusivity a are assumed. Energy effects associated with 
viscous dissipation and, for example, the pressure term PTDp/Dr, are neglected. 
The equations, in terms of instantaneous-flow quantities, are 

a a a W  
- (yu )+- - (yv )+a=  0, 
ax aY 

au au au wau lap  
-+u-+v-+--+-- = VVBU-g, 
a7 ax ay y a e  pax 

at at at at 
-+u-+v-+-- = aV%, 
a7 ax ay yae (5) 

where 7 is time and t temperature. 
The stability analysis of a boundary-layer flow proceeds by perturbing the 

steady laminar flow {Uo, V,, etc.], called the base flow, with postulated disturb- 
ances {u’,v’,etc.). Linear theory follows by neglecting nonlinear terms in the 
disturbance magnitudes, justifiable for smaIl disturbance amplitude. The dis- 
turbances are assumed periodic and one may specify exponential damping or 
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amplification with either downstream distance x or time 7. Amplification with 
downstream distance is more closely related to actual flow and lends itself to 
comparison with experimental data. For this reason distance amplification will 
be postulated here. Batchelor & Gill formulated the equations in terms of time 
amplification of disturbances and Kambe followed the same procedure. Only 
periodic behaviour of disturbance quantities is admitted in the azimuthal 
direction 8. The disturbance quantities are postulated as 

d ( x ,  y, 8,r) = Re {p(y) exp [i(& - BT + no)]), 

d ( x , y ,  8 , ~ )  = Re(d(y)exp[i(ciix-,&+nO)]), (8) 

w’(x, y, 8 , ~ )  = Re(&(y)exp[i(~x-,&+n8)]}, 

p’(x, y, 8, T) = Re {f(y) exp [i(&x - /% +no)]}, 

t’(x, y, 8,7)  = Re { j(y) exp [i(& - la7 +no)]), 

(7) 

(9) 

(10) 

(11) 

where 3, d, I?, f and j are the complex dimensional amplitude functions and 
& is complex. The real part of & is the dimensional wavenumber 2nlh in the x 
direction, where h is the physical wavelength. The imaginary part is the ex- 
ponential amplification rate in the x direction. Hence, the amplitude of the dis- 
turbance increases with x for ai c 0, attenuates for cxi > 0 and is neutral for 
ai = 0. The quantity pis taken to be real and equal to 2nf, where f is the physical 
frequency of the disturbance. The azimuthal wavenumber n characterizes the 8 
dependence of the disturbance quantities and has integer values, say the positive 
ones, i.e. n = 0, 1, 2 , 3 , .  . . . The value of n determines much of the spatial character 
of the disturbance as will be discussed in the next section. 

We shall simultaneously consider both jet and plume flows. The characteristic 
length L,, velocity V ,  and temperature for jet flow are 

L, = x/R, 

V ,  = VR2/x, 

T, = to-t, Atow I / x ,  (14) 

where R is the ‘momentum-flux parameter’ defined by Mollendorf & Gebhart as 
R = (3M/16npv)*, where 1M is the momentum flux across a plane normal to the 
axis of the jet and ,u and v are the viscosities. The actual nozzle Reynolds number 
is a function of the velocity distribution at the nozzle. For a parabolic velocity 
distribution Re, = 4R and for a top-hat velocity distribution Re, = (8143) R. 
The characteristic quantities for an axisymmetric plume are the same when R is 
($Grx, (see appendix A). The base flow and time-dependent disturbances, 
when scaled with these characteristic quantities, are written without the caret, 
e.g. P/V, = F.  

The instantaneous-flow quantities, e.g. u = U, + u‘, are substituted into 
(1)-(6). The results are linearized in disturbance quantities and boundary-layer 
approximations are applied to the base flow. Several additional approximations 
are required concerning LX and several non-parallel terms. These are justifiable 
when the thickness of the flow region changes sufficiently slowly downstream. 



'viscous stability of a roulzd vertical laminar j e t  375 

The disturbance equations, in terms of the disturbance amplitude distributions 
F ,  G, H ,  I and J ,  are 

ayF - i(7G)' + nH = 0, (15) 

(17) ia(U0-p/a)G = - 1 [G+?G' -  1 (a2+?) n2+ 1 G - 7 . 1  - I ' ,  R 

ia( vo - P/a) H = - 1 [..+iH-(...-;;i-)H+FG]-:I, n2+ I (18) R 

ia(Uo-/3/a)J+GTA 

The primes above indicate differentiation with respect to the independent 
similarity variable 7 = Ry/x.  The Prandtl number is c = v/a and for a non- 
buoyant jet, U, = 2( 1 + $72)-2 and To = (1 + &y2)-2c,  Equations (15)-( 1 9 )  may be 
shown to be identical to those of Batchelor & Gill by substituting iG for G above 
and taking E = 0. Note that e(x) in (16) above is the buoyancy perturbation 
parameter defined in Mollendorf & Gebhart as E ( X )  = Gr/R4, where 

Gr E g~x3Ato/v2.  

The predominant effect of positive thermal buoyancy is to increase the axial 
velocity component of the jet base flow in the region of the thermal boundary 
layer and to  reduce it slightly a t  larger y. The magnitude of the effect increases as 
the Prandtl number decreases. For a Prandtl number of 6.7 the increase in the 
axial velocity component is about 7 % near the jet axis. For non-zero values of E: 

the disturbance energy equation in J is coupled to the others through the 
buoyancy body-force term. The above set of five equations for the five unknown 
eigenfunctions F ,  G, H ,  I and J ,  along with the appropriate boundary conditions, 
constitutes an eigenvalue problem whose solution predicts the stability charac- 
teristics of the prescribed base flow. Boundary conditions are considered below. 

2.2. Dist,urbance boundary conditions 

The proper set of boundary conditions for (15)-( 19) depends on the value of the 
azimuthal wavenumber n to  be used. From (7)-(11) the various dimensionless 
disturbance quantities are given as follows: 

u'(x, y , 8 , ~ )  = ~ F ~ e - ~ ~ x c o s ( a , x - ~ ~ + n 8 + 8 , ) ,  (20) 

d(x ,  y , 6 , ~ )  = IGl e-aE"cos(a~2--T+nO+Oa), (21) 

w'(x,y,O,~) = IHI e-aiXcos(qx-/37+nO+8,), (22) 

p'(x, y, 8 , ~ )  = 111 e-qx cos (a, x - / 3 ~  + n8 + O1), (23) 

t'(2, y, 8,~) = I J1 e-@ix cos (a,x - /3r + nO + OJ). (24) 

Note that (PI, lG(, etc., are the magnitudes of complex numbers, e.g. 

lF12 = Re2(q+Im2{3'], 
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and S,, S,, etc., are phase angles, i.e. 
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8, = tan-1 (Iml{B')/Re {F}). 

Since for any value of n the disturbance quantities must go to zero at large y ,  
we have 

u' = v' = w' = p' = t' = 0 as y+w.  (25) 

The proper boundary conditions on the jet axis depend on n. For n = 0, no 
0 variation, we have symmetry about the jet axis. Therefore w' is everywhere 
zero and the boundary conditions on the axis are 

For = 1 there is a cos8 variation in the disturbance quantities. This is the 
simplest asymmetric mechanism. Since the scalar quantities p' and t' cannot be 
muIti-valued when approaching the axis radially at different values of 8, they 
must vanish on the axis of the jet. The same is true for u' since it is directed along 
the axis of the jet. However, the radial and azimuthal components v' and w' of 
the disturbance velocity lie in a plane perpendicular to  the axis of the jet. It may 
be seen from the nature of the co-ordinate system that on the axis of the jet 
d and w' are equal in magnitude but out of phase by ninety degrees. Further, 
non-zero values of v' and w' are possible only for n = 1. 

In terms of the amplitude functions, the boundary conditions become 

for n = 0, 1 H'(O) = G(0) = I'(0) = J'(0) = 0 

E"(co) = G(w) = I (w)  = J(co) = 0 

for n = 1, (28) 

(29) 

1 
} for n -+ 0, I .  

P(0) = I(0) = J (0 )  = G(O)+iH(O) = 0, 

F(w)  = G(w) = H(w)  = I (w)  = J ( W )  = 0, 

P(0) = G(0) = H(0) = I(0)  = J(0)  = 0, 

P(C0) = Q(C0) = H ( W )  = I(C0) = J(c0) = 0. 

The boundary conditions for a given n are not all necessarily independent. The 
required number is equal to the overall order of the system of diRerentia1 equa- 
tions. The asymptotic behaviour of the equations for both n = 0 and n = l is 
dealt with in the next subsection. 

2.3. Asymptotic behaviour of the stability equations 
Symmetric disturbances (n = 0). For symmetric disturbances (i.e. a/iM = w' = 0) 
equations (1)-(6) are much simpler. The continuity equation is satisfied by 
introducing a disturbance stream function 
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The pressure is eliminated by cross-differentiation and the dimensionless 
Orr-Sommerfeld equations in cylindrical co-ordinates are found to be 

~ C ~ R [ ( U O - / ~ / ~ ) D Q , - ~ ( U ~ / ~ ) ’ Q , ]  = D2Q, +€qJ’, (33) 

(Uo-,9/a)J-z#] = J”+--a2J, J’ 
7 rl 

(34) 

where primes indicate differentiation with respect to 7 and the differential 
operator D is given by 

DE----- $. d2 
7drl 

(#‘/q)’ = # / r ]  = J’ = 0 

The boundary conditions are written as 

4’1-11 = $17 = J+O as 7 - t ~ .  

The solution of (33) for large 7 and 6 = 0, satisfying (36), is 

(35) 

where C, and C2 are arbitrary constants and y2 = a=- iPR. This is the expansion 
of a modified Bessel function of the second kind for large argument. The 
behaviour of q5 for small argument is as follows: 

# c , ~ 2 [ i + b 2 ~ 2 + b 4 q 4 + . . . ] + c 4 ~ 2  1+T72f-7;14+... ] , (38) [ 192 a4 

where C, and C4 are arbitrary constants and 

b =1. - 8(5a+a2) and 6,  = &(C4+$a2+a4), 

where tZ E a2 + iuR( 2 - /3/a). 
Equations (37) and (38) will form the basis for the numerical solution of (33) 

for e = 0. For non-zero values of the perturbation parameter E(x), equations 
(33) and (34) are coupled through the buoyancy-force term. A slightly different 
numerical technique is used to account for buoyancy coupling and only the 
expansion for small 7 is needed. It can be shown that coupling plays a rather 
small role in the expansions for small 7 and alters (38) by an additional term of 
O($). E’or the numerical technique to be used with coupling for n = 0 this 
alteration is not needed. Similarly, the expansion for the disturbance temperature 
function J is affected only in higher order terms by buoyancy coupling and is 
given by 

J = C5[I+&2+. ..I, (39) 

where C, is an arbitrary constant and F = a2 + k c R (  2 - /3/u). 
Asymmetric distuvbances (n = 1). Just as symmetric disturbances (n = 0) 

could be simplified by using a stream function, the equations for the case n = 1 
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can be simplified by dehing new variables. This was done in a rather general 
way by Kambe for any value of n. Kambe did not consider the disturbance energy 
equation, but it will be given here with the other results for n = 1. The technique 
consists of eliminating F and 1 in (15)-(19) and defining new variables and 
differential operators. The resulting equations (for n = I )  are 

D,A;T -D-lA%X = iaR((Uo-P/a) (D,T-D-,S) + UA(T-S)}, (40) 

El A: T + E-,A$h' = iaR(( Uo -PIE) (El T + E-,S) - UA(T + X)] + ~ELXJ, (41) 

A? J = i a ~ R (  Uo -/3/a) J + @vR(T + S )  TA, (42) 

where S = -iG-H, T = -iC;+H (43) 

and 

D =-+-, d l + n  E , = D D , + - 7 .  a2 
-a7 7 n 

(44) 

G and H are written in terms of the new variables S and T as 

G = +i(T+S) ,  H = $ ( T - 8 ) .  (47) 

The expansions for the amplitude functions on the axis of the jet for n = 1 are 

where a,, b,, d, and d, are rather cumbersome relations involving Cl, C,, C, and C6 
and will not be written here since it is convenient to solve the governing equations 
numerically in terms of S and T (defined by (43)). By using (49) and (50) to deter- 
mine the expansions for X and T we arrive at 

s A + 1172 + cq + 0(74), (53) 

T - + ~ ~ 2 - ~ 7 2 + 0 ( ~ 4 ) ,  (54) 

( 5 5 )  

where A = - ZiC,, B = - 4iC6, C = aC, and D = C,. The above expansions in 
terms of the four arbitrary constants A ,  B, C and D will form the basis for the 
numerical solution of (40)-(42). 

J - D7 + 0(r3),  

2.4. ATumerical solution and results 

Symmetric disturbances (n = 0).  The numerical scheme used to solve the fourth- 
order, two-point boundary-value, eigenvalue problem posed by (33) and (34), 
subject to the boundary conditions (36), relies on the linear nature of the equa- 
tions and boundary conditions. Superposition is used in the numerical technique 



Viscous stability of a round vertical laminar jet 379 

described by Hieber & Gebhart (1971). The method used here for the case n = 0 
and 8 = 0 is different in that expansions are used both as 7 -f 00 and at 7 = 0 and 
the unknown constants are determined by 'patching' near the middle of the 
boundary layer, at  qP. Starting with the expansions (37), we take C, E 1, without 
loss of generality, since the governing equations and boundary conditions are 
homogeneous and linear. Then particular real values are taken for R and ,LY and 
a complex a is guessed. At large 7 (q = qe, say) equation (37) is used to evaluate 
q5 N Clq5+C2q52 and the necessary derivatives needed to  start the integration. 
Typically re is taken to be 10. A modified Hammings predictor-corrector is used 
to integrate the equations in to rP and the values of 9, and its derivatives at  T~ 
are stored. The same is done for 9,. 

Next the expansion at 7 = 0 (equation (38), i.e. $ N C35h3+C4q5,) is used to 
provide the proper starting values, the integrations are performed from 7 = 0 
to 7 = rP and the values of the functions at  qD are stored. The patching procedure 
consists of satisfying the following relations at  7 = T ~ :  

When the above relations are satisfied, the fourth and all higher order derivatives 
will match since the governing equation is of fourth order. This system of four 
equations involves three unknown constants C,, C3 and C4, and only three of the 
equations can be satisfied by solving for C,, C, and C,. The remaining relation is 
satisfied by the proper choice of the eigenvalue a. So if (57)-(59) are used to solve 
for C,, C3 and C, then (56) can be satisfied only by the proper choice of a. The 
correct value of a is determined iteratively as follows. Having determined C,, C, 
and C4 we define 

f c3$3 + c4 $4- $1 - c2 $2. (60) 

We now seek an a such that f(7,) = 0. Let the correct value of a be denoted 
by a,, and the &st guess by a,. We can expand about the initial guess in a Taylor 
series as follows: 

By using only the first two terms of (61) we can solve for 6a at a = al: 

The derivatives with respect to a are obtained from the equations, boundary 
conditions and expansions and integrated along with the governing equations. 
The new guess for a = a, is then given by (62) as 

a2 = a,+&. (63) 
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FIGURE 2. Typical highly damped eigenfunction for a non-buoyant jet ( E  = 0) 

and disturbance mode n = 0. R = 20, = 0.20, ur = 0.2863, uI = 0.7956. 

By successively iterating on cc, it is possible to converge to a solution which 
satisfies the governing equations and boundary conditions for the specified 
and R. 

A typical eigenfunction is shown in figure 2 for a damped condition, cci > 0. It 
exhibits the same general shape and complexity as the damped eigenfunctions 
found by Knowles & Gebhart (1968) for natural convection adjacent to a vertical 
plate. Although the equations (for n = B = 0)  were solved for many values of p 

R 

FIGURE 3. Eigenvalues for a non-buoyant jet ( E  = 0) and disturbance mode 12. = 0. 
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FIGURE 4. Behaviour of tci vs. R for various values of /3 for the disturbance 

moden.=Oande=O.  

and R, none of the results yielded either neutrally stable points (a, = 0)  or ampli- 
fied ones (ai < 0) .  Some damped points are shown on figure 3 for n = 0. The 
absence of disturbance amplification for the mode n = 0 is in agreement with the 
analyses of Batchelor & Gill and of Kambe for the ‘ top-hat ’ and ‘discontinuous- 
parabola’ base-flow distributions, respectively. The ai 8s. R behaviour for fixedp 
a,s calculated for n = 8 = 0 is shown in figure 4. This figure suggests that a, tends 
to zero very slowly for large values of R and small values of p .  

The effect of buoyancy coupling was also explored for the symmetric mode 
n = 0, for - 1 < 8 < + 1. A slightly different numerical technique was used. As 
mentioned previously, the effect of buoyancy coupling was shown to have an 
effect only on higher order terms in the series expansions at q = 0. Therefore, it 
was convenient to integrate the full coupled equations from 7 = 0 to q = ye using 
the expansions a t  7 = 0 to provide the starting values. This problem is a sixth- 
order, two-point boundary-value, eigenvalue problem. We must guess and then 
iterate on + “ ( O ) ,  J ( 0 )  and a, such that the disturbance velocities and temperature 
go to zero as r-tco. This procedure agreed with the aforementioned uncoupled 
patching technique for e = 0 and converged well for both positive and negative 
values of e, for various Prandtl numbers. Although buoyancy coupling had some 
effect on the curves of figure 4 for n = 0, the effect was not significant enough to 
result in neutrally stable or amplifying solutions, even for large R. 

Asymmetric disturbances (n = 1). This mode was shown to be unstable by 
Batchelor & Gill and by Kambe for the assumed top-hat and parabolic profiles. 
Our numerical solution of the governing equations for n = 1 has several points 
in common with the numerical schemes described above for n = 0. For buoyancy 
coupling and n = 1 we have an eighth-order, two-point boundary-value, eigen- 
value problem. The numerical procedure is to integrate (40)-(42) separately, using 
the four sets of starting values determined from the expansions at  7 = 0 (i.e. 
equations (53)-(55)),fromq = 0 to q = re. The boundary conditions to be satisfied 
at the edge of the boundary layer are 

(64) T(co) = X(m) = T’(co) + X’(co) + 0. 
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1.8 1 

FIGURE 5. (a) Neutrally stable eigenfunctions and (b)  corresponding phase angles for a 
non-buoyant jet ( 6  = 0) and the disturbance mode n = 1. R = 9.4, p = 0.10, a, = 0.2208, 
C Z ~  = 0.0000797. 
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FIGURE 6. Amplification contours for a non-buoyant jet ( 6  = 0) and the disturbance mode 
n = 1, and Kambe’s neutral curve for a parabolio profile. Paths of oonstant physical 
frequency. 

As before, one of the constants can be set equal to one ( A  = 1) and the total 
functions constructed (at 7 = 7e)  from the separate integrations satisfy the 

S,  + BS, + CS, + DS, = 0, (65) 
following : 

Tl+BT2+CT3+DT4 = 0, (66) 

(Xi + Ti) + B(Si + Ti)  + C(Si + Ti)  + B(Si +Ti) = 0, (67) 

J1+BJ2+CJ3+DJ, = 0. (68) 

Equation (67) corresponds to the boundary condition u’(co)+O, and was 
chosen to be satisfied by the proper choice of 01. Equations (65), (66) and (68) are 
satisfied by solving for the constants B, C and D. Again we successively iterate 
on 01 and apply the same correction procedure as was used for n = 0. The method 
converges very rapidly, and the effect of different mesh sizes and values of qe was 
explored. Typical values used were A7 = 0.10 and re = 7 (for small PR, re = 20). 

We shall first discuss the results for the non-buoyant ( E  = 0)  case. Typical 
eigenfunctions at  the critical Reynolds number are shown on figure 5 for n = 1. 
These functions have the same general shape as those found near neutral condi- 
tions by Knowles & Gebhart for natural convection flow adjacent to a vertical 
surface, except for the modification around and at 7 = 0 due to different 
boundary conditions. 

Unlike the results for n = 0, a neutral curve and an amplifying region were 
easily found for n = 1. The stability plane is shown in figure 6 in terms of the 
dimensionless frequency ,8 vs. the momentum-flux parameter R. Contours of the 
spatial amplification rate at are shown. Recall that the physical nozzle Reynolds 
number is given by 

where u = 4 corresponds to a top-hat velocity distribution at the nozzle and 
a = 8/43 corresponds to a parabolic distribution, as from Poiseuille flow in the 
nozzle. 

Re, = aR, (69) 
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FIGTJRE 7. Various computed neutral curves approaching the neutral invisoid asymptotes 

of Batchelor & Gill for a non-buoyant jet ( E  = 0) and disturbance mode n = 1. 

The neutral curve extends down to R = 9.4. Its upper branch approaches the 
inviscid asymptote found by Batchelor & Gill for the same velocity profile. 
Recall that Batchelor & Gill’s normalization for the base flow is different from 
that used here. However, the relation between /3 and the physical frequency is 
unaffected by these differences. 

In figure 6 our neutral curve (for n = 1 and Schlichting’s velocity distribution) 
is also compared with that of Kambe (for n = 1 and a discontinuous parabolic 
profile). Kambe did not relate his flow to a physical circumstance. However, if 
the velocity distribution satisfies a momentum-flux condition (as does 
Schlichting’s) then his characteristic quantities are identical to those of 
Batchelor & Gill. The minimum unatable Reynolds number found by Kambe 
corresponds to R = 8.2 (for /3 = 0.30). The value we calculate is R = 9-4 (for 
/3 = 0-l), which agrees with the value calculated by Burridge. Figure 7 shows 
how our calculated wave speed, frequency and wavelength approach at large R 
the inviscid values (re-normalized) found by Batchelor & Gill. 

A n  important physical interpretation of the stability plane deals with paths 
of constant physical frequency, as has been discussed by Dring & Gebhart (1968). 
As a small disturbance is convected downstream in the linear range in a given 
flow, its physical frequency remains constant. By using the characteristic length 
and velocity, one may determine its path, in any given flow, on a ,I3 vs. R plot. 

From ( 12) and ( 13) we write the frequency f in terms of 8, R and x as 

f = vR8/3/%x2. (70) 

At constant frequency, ,8 is seen to be proportional to x2 in a given jet (v,R). 
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Thus, the path of a disturbance of any frequency convected downstream in 
a given jet corresponds to increasing p a t  constant R. It moves up vertically on 
a /3 us. R plot. Several such paths are shown on figure 6 .  A disturbance coming 
into the jet at small x may be initially in the stable region and then cross the 
neutral curve downstream to be amplified. For values of R less than that at  the 
nose of the neutral curve, a small disturbance of any frequency will not be 
amplified as it is convected downstream. At larger R any small disturbance 
introduced into a jet at  sufficiently small x will be damped until it reaches the 
lower branch of the neutral curve and then will begin to be amplified. Amplifica- 
tion continues until the disturbance reaches the upper branch of the curve. Then 
it will begin to be damped, provided that it has not become subject to nonlinear 
effects. This interpretation permits comparisons of these results with experiment. 

An apparently careful experimental determination of the conditions for transi- 
tion of round laminar jets was reported by Viilu. The transition range was found 
to lie between nozzle Reynolds numbers of 10.5 and 11.8. This corresponds to 
a momentum-flux Reynolds number R of about 3. The minimum value for 
instability calculated here is R = 9.4. We do not now have a resolution of this 
difference. However, our calculations assume boundary-layer flow, which agrees 
with the complete jet solution for R 8. Another difficulty in making such com- 
parisons concerns the question of nonlinear effects and interactions. These effects 
are important with initially large disturbances and as any disturbance is highly 
amplified downstream. These matters are discussed in subsequent sections. 

Comparisons with the laminar-length experimental results of Marsters, 
McNaughton & Sinclair and Reynolds requires more elaborate interpretation of 
our theoretical results. It is necessary to consider how disturbances grow. This is 
determined by calculating amplitude ratios and drawing their contours on the 
stability plane, in the manner of Dring & Gebhart. One computes the growth in 
amplitude of a small disturbance as it is convected downstream along a line of 
constant physical frequency in a given jet (v, 3). Assume that A, is the amplitude 
of the disturbance as it crosses the neutral curve at  x, and a,@) is the local 
spatial amplification rate. Then the amplitude A, at x is found by integrating the 
following expression, from x, to x: 

In  generalized form this becomes 

The ratio A,/A, is a measure of the relative amplitude of disturbances at  down- 
stream locations. 

Lines of constant A,/A,, called amplitude-ratio contours, are shown on 
figure 8 for the asymmetric disturbance n = 1. If the disturbance has an ampli- 
tude of 1.0 at the lower branch of the neutral curve its amplitude is given by these 
contours as it is convected downstream. 

25  F L Y  61 
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FIGURE 8. Neutral curve and amplitude-mtio contours for non-buoyant jet ( E  = 0). Neutral 
curve for a slightly buoyant jet B = 1 (a = 6.7) and for a thermal point-source plume for 
the disturbance mode n = 1 (a = 2). ------, data of Reynolds for assumed frequencies; 
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FIGURE 9. Theoretical distance over which disturbance amplitude is increased by a factor 
of 4 for water at 100 O F  and the disturbance mode m = 1. 
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We see that all small disturbances in a given jet (v, R) undergo the same increase 
in amplitude over the same range of p, independent of the frequency of the 
disturbance. However, the downstream distance over which this increase in 
disturbance amplitude occurs is a function of the disturbance frequency. From 
(70) the relation between a change in x and in B is 

2 2  - XI = AX = ( vR3/2nf )9 (& - Pt),  (73) 

where Ax is the distance travelled in going from to p2. Thus we see on figure 8 
that for R = 50 a disturbance of any frequency will increase in amplitude by 
a factor of four as it travels between the lower and upper branch of the neutral 
curve. However, the actual distance Ax in the jet over which this increase in 
amplitude takes place is inversely proportional to the square root of the physical 
frequency. Thus higher frequencies are favoured for amplification. 

Equation (73) has been used to plot figure 9 for R = 50 and 100. The curves are 
the two branches of the neutral curve as a function of x and frequency for water 
jets a t  100 O F .  Also shownis Ax, for an amplitude ratio of 4.0, for each value of R. 
The lower the frequency, the further a disturbance must be convected for the 
same amount of amplification. Also, a disturbance of given frequency is amplified 
by the same amount in a shorter distance Ax as the Reynolds number increases. 
This is consistent with the observations of previous investigators that the laminar 
length L of a jet before transition decreases with increasing Reynolds number. 
The experimental correlations suggested are of the form 

L/D = AReg. (74) 

Our experimental laminar-length correlation and that of McNaughton & Sinclair 
are given later as equations (78) and (76), respectively. Since x1,Pl < x2,P2 we 
approximate Ax and A) by x2 and p2, and our relation from theory, equation (73), 
may be written as 

Since x is the co-ordinate along the axis of the jet, this relation can be compared 
with experimental results of the form (74). We assume that the disturbance 
frequency remains constant and ask whether transition is related to amplitude- 
ratio contours, as it is known to be in some other flows. For agreement between 
equations (76) and (78) and equation (75), ,8 a t  transition must be proportional 
to R-7.92 and R-5.24, respectively. Note that this required R dependence of ,8 is 
approximately the same for the data of Reynolds, Marsters and McNaughton & 
Sinclair since the slopes are all about the same on an L/D 'us. Re, plot. The con- 
stant of proportionality is a function of the fluid, the diameter of the jet and the 
transition frequency. Our experimental, naturally occurring transition results 
and those of Reynolds (of the form (74)) are written in terms of /3 via (75) for 
assumed transition frequencies of 0.5, 2.0, 5.0 and 10.0 Hz. The results are shown 
on figure 8. Note that the data of Reynolds (presumably non-buoyant) is close to 
the lower branch of our theoretically determined neutral curve. This indicates 
that the applicable range of the theory corresponds to very low values of A,/& 
Our buoyant jet data are deeper into the amplified region, and correspond to 

x/D M R&(v/2nfDa)*/3*. (75) 

25-2 
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lower LID’S but higher L’s. Recall that these computed results are for non- 
buoyant jets and that amplitude-ratio contours and paths of constant physical 
frequency are not at present known for buoyant jets. Hence, our buoyant jet 
data are not completely consistent with this theory. Neither set of curves 
coincides with amplitude-ratio contours, but they do have similar characteristics. 
They suggest that the theory has some relevance. 

It was suggested by Hieber & Gebhart that transition for natural convection 
adjacent to a vertical surface occurs when &/A, el0. Our experiments, 
described in following pages, indicate that the amplitude ratio corresponding to 
jet transition is very much lower than this, the typical value being less than 
ASIA, = 4. Apparently the difference is in the highly stabilizing influence of 
a surface, absent in free-boundary flows. A very low transition threshold was 
also indicated by the experiments of Pera & Gebhart (1971) in natural convection 
plumes arising from line sources. 

3. Experiment 
3.1. Experimental apparatus 

The main components of our experimental apparatus were a 20cm Mach- 
Zehnder interferometer, the water tank or test section, and the jet-producing 
device described in appendix B. Design considerations for this device were 
accuracy and ease of measuring the nozzle exit velocity, reproducibility of data, 
ease of taking data over a wide range of conditions and freedom from vibration. 
The most commonly used method of producing liquid-into-liquid jets has been 
simply gravity feed. Our jets were produced by a remote-controlled electrically 
driven pushing apparatus which could be operated in a cyclic fashion. 

The jets were injected vertically into a large (2 x 2 x 3ft  inside dimension) 
stainless-steel tank insulated with polyurethane foam. The jet delivery tubing 
outside the tank was insulated with conventional insulation to prevent heat 
losses. However, the portion of the delivery tubing under water, as well as the 
nozzle, had double glass walls with the inside surfaces silvered and the gap evacu- 
ated to make the walls nearly adiabatic. This was essentially Dewar piping. The 
purpose was to reduce to the minimum any buoyancy-induced circulations in the 
test tank. Provision was made to use nozzles of various diameters by using con- 
ventional ground-glass fittings. The nozzlea converged at  the outlet, ensuring an 
almost uniform velocity profile. Thermocouples were placed in the nozzle near 
the exit, further upstream in the delivery tubing, and in the tank water away 
from the jet. Thermocouple outputs were recorded on a dynograph. 

The tank was equipped with interferometer grade windows and the tempera- 
ture field of the heated round jets was observed using a new 20 cm Mach-Zehnder 
interferometer similar to the one described by Gebhart & Knowles (1966). 
A 20 mW helium-neon gas laser was used as a light source to avoid the need for 
a compensation chamber. The resulting interferograms (see figures 12-14, 
plates 1-3, for example) are inevitably of lower quality than those which result 
from the use of less coherent light, They were recorded with a 35 mm single-lens- 
reflex camera. 
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3.2. Effect of buoyancy on laminar length 
A common experimental approach to jet stability is to measure the laminar jet 
length as a function of the Reynolds number. The observations of Reynolds, 
McNaughton & Sinclair, Marsters and McKenzie & Wall are in this form. The 
data are displayed on a log-log plot of the laminar length divided by the diameter 
of the jet, LID, DS. the jet Reynolds number. Attempts at correlation take the 
form of straight lines on this plot. 

The suggestion of Marsbrs for Re, < 2300 is given by (74). The data of 
Reynolds and of McNaughton & Sinclair suggest 

LID = 10sRe~2*M. (76) 

This Reynolds number dependence is about the same, but the constant differs 
by a factor of 10. This might suggest that the Marsters data were taken in quieter 
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surroundings. The experimental results of McKenzie & Wall are correlated as 
follows~ 

This is a very large difference. Marsters notes this discrepancy, but does not offer 
an explanation. All the results are compared in figure 10. 

Our measurements of laminar length are also shown in figure 10. A typical 
interferogram showing transition is shown in figure 14 (b )  (plate 3) .  The correlating 
line for our data shown in figure 10 is 

(78) 

LID = 103~e51. (77) 

LID = 3 x 1 0 4 ~ e p .  

The values of temperature difference shown on the figure are At = ti-tm. 
McKenzie & Wall’s correlation has the same Reynolds number dependence as 

that of our data. However, the level is different by a factor of 30. It is unfortunate 
that McKenzie & Wall do not adequately describe their experiment. They refer 
to the working fluids as either gas or liquid and make no mention of which gas or 
what liquid. However, schlieren and birefringent flow visualization techniques 
were used and it appears that the jets were injected horizontally. Since density- 
sensitive optical devices were used, the jets were obviously buoyant. Jets in the 
low Reynolds number range 10-1000 are now known (Mollendorf & Gebhart 
1973) to be sensitive to buoyancy effects. Recall the definition E ( X )  = Gr/R4. 
Although the degree of buoyancy can only be guessed for their experiments, it 
appears that their very low LID values are either the result of significant 
buoyancy effects, horizontal injection, a high disturbance level or a combination 
of these. The lack of documentation makes any further conjecture impossible. 

In  our experiments it was possible to determine the laminar length and also to 
investigate the effects of varying amounts of thermal buoyancy on the laminar 
length. Data were taken for a range of Reynolds numbers of from 300 to 5500 for 
jet-ambient temperature differences of 20, 30 and 45 O F .  Our data on figure 10 
have a slope very different from those of the correlations in (74) and (76). Our 
higher Reynolds number data cross the region of McNaughton & Sinclair. 

Marsters was concerned about buoyancy effects. He calculated GrD, A,/ReL 
for his experiments to be 2 x and concluded that such effects were small. 
This is a very approximate calculation. The appropriate characteristic quantities 
are not nozzle diameter and exit velocity, but are given by (12)  and (13) .  The 
perturbation parameter ~ ( x )  = GriR4 is the appropriate measure of the effects 
of buoyancy. Marsters’ experiments in CO, had negative B. A typical value would 
be about - 0.1. 

Values of B at the transition point, e (L) ,  were calculated for our buoyant-jet 
data. The results are shown in figure 11 as a plot of LID zcs. e(L), which varied 
from 3.2 x 10-5 to 1.69 x over the range of Reynolds numbers we studied. 
The laminar-length data are seen to correlate well with e(L) as follows: 

LID = 2-12[e(L)]0’214. (79) 

The data above e(L) = 1 have more scatter. This is thought to be due to the 
unsteadiness of the observed point of jet transition under such highly buoyant 
conditions. Such flows are more nearly thermal plumes of very different stability 



Viscous stability of a round vertical laminar jet 391 

1000 

io-5 10-4 10-3 10-2 10-1 100 101 102 103 

W )  
FIGURE 11. Laminar-length data for a buoyant j e t  as zb function of relative buoyancy. 

0, At = 20 O F ;  A, At = 30 O F ;  0, A6 = 45 O F .  

characteristics. The transition location was clearly defined and steady at smaller 
values of e. Our attempt to correlate transition data with GrD,AtjlRe% was 
unsuccessful. The data grouped themselves according to values of At. 

The above correlation can be used with the definition of e to arrive at  the 
following empirical result for the laminar length of a buoyant jet: 

LID = 568.5[(2~+ 1) GTD, A ~ ~ / & ? & ] # .  (80) 

This form is clearly at complete variance with previous supposedly non-buoyant 
correlations. 

The excellent correlation from figure 11 and its corollary, equation (80), results 
in a quandary. A non-zero asymptote for L/Dvs. Re, is not found ase(L)+O,i.e., 
as Gr,, dtj + 0. This characteristic thus questions the concept that the transition 
location is a function of Re, as well as the relation between stability theory and 
actual jet transition. Our experimental results do not guide us to a resolution of 
these conflicts. The data on figure 11 simply do not approach an asymptotic 
value at  small e(L). This remains a mystery. Nevertheless, our subsequently 
discussed measurements of controlled disturbance growth in low buoyancy jets 
are in agreement with the predictions of stability theory and the measured 
laminar lengths are also consistent with it. 

3.3. ArtiJicially induced disturbances 

In  order to assess the detailed prediotions of stability theory, we carried out an 
experimental investigation of the behaviour of artificially induced disturbances 
of controlled frequency. For several kinds of natural convection flow, similar 
experiments have indicated the range of validity of this kind of analysis, sub- 
stantiated many of its details and have also given insight into the later processes 
toward transition. 

The flow in jets and plumes differs from natural convection over a vertical 
surface not only because of the absence of the stabilizing influence of the plate, 
but also in the variation of their energy content. Flows over heated surfaces are 
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continually fed with thermal energy and their momentum continually increases 
up the surface. Jets and plumes contain constant amounts of thermal energy, and 
jets have unchanging momentum if there are no buoyancy forces in the flow field. 
Thus, the velocity in these free-boundary flows does not increase downstream. 
This characteristic may cause the complicated modes of jet instability and 
transition which have been reported. 

A series of interferograms showing some of the characteristics of naturally 
occurring jet breakdown is shown in figures 12-14 (plates 1-3). All conditions, 
other than the jet Reynolds number, are essentially the same. At the lower 
Reynolds numbers the jets tend to meander periodically and twist in a wavelike 
manner. It seems they would more rapidly suffer severe disruption if the flow 
contained more energy. As the Reynolds number increases, the twisting is more 
violent and the wavelike meandering occasionally degenerates into what appears 
to be turbulent bursts. At yet higher Reynolds numbers the laminar regions and 
transition zone are shortened and the familiar, relatively fine-grain turbulent 
flows are quickly produced. 

Disturbance formulations in stability analysis suggest that one might 
categorize disturbances on the basis of their symmetry. Naturally occurring 
symmetric disturbances are seen in figure 14(a) at Re, = 537. However, the 
symmetric lumps near the nozzle outlet quickly distort into non-symmetrical 
form, In  the theory, the former are much more stable than the latter. 

The predicted stability of symmetric disturbances was tested experimentally. 
A short length of flexible surgical tubing was inserted into the jet delivery line, 
between the nozzle and an upstream check valve. Small amplitude oscillations 
were applied to the tube by subjecting an electromagnet to a modulated d.c. 
voltage, in the manner of Knowles & Gebhart. Over a wide range of frequencies 
and jet Reynolds numbers such oscillations had very little effect on jet stability. 
The symmetrical disturbances were seen to damp out. The flow reacted noticeably 
only when very large amplitudes were used. 

Controlled asymmetric disturbances were introduced with a vibrating ribbon. 
The ribbon, of 6 in. high x 1 in. wide x 0.0005 in. thick inconel foil, was supported 
by a long rod pivoted at  its centre. The other end of the rod was connected to the 
electromagnetic vibrator. The electromagnet was equipped with a calibrated 
linear transducer converter, permitting the measurement of disturbance ampli- 
tude. The resonant frequency of the rod (including the weight of the extension 
arm) was calculated to be 12.5 Hz. The ribbon was positioned across the axis of 
the jet. The effect of the presence of the stationary ribbon in the flow was checked 
(by comparing interferograms with and without the vibrator in the flow field) 
and found to be undetectable. 

The asymmetric disturbances were highly destabilizing. Data were taken for 
a range of Reynolds numbers, frequencies and vibrator amplitudes. Although 
much of the data is for buoyant jets, some approximately non-buoyant flows 
were also studied. The results are presented as collected interferograma on 
figures 15-20 (plates 4-9). The frequency and amplitude of the ribbon are given 
below each photograph. The local value of the perturbation parameter ~ ( x )  is 
shown to the right of the interferograms of the undisturbed flow. The numbers 
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to the right of the jets subjected to a particular frequency are the local values of 
the amplitude ratios calculated from (72) and shown on figure 8. The points at 
which each jet crosses the lower and upper branches of the neutral curve are indi- 
cated by N.C. The location of the inviscid asymptote is indicated by I.V.N.C. 

Downstream distances were converted to values of /3, via (70), by taking x = 0 
to be at the nozzle exit. This is not strictly correct since the theory supposes that 
the flow originates from a point source of momentum. Although these flows show 
boundary-layer characteristics, the nozzles are far from being point sources. This 
effect could perhaps be treated by considering a virtual source at some distance 
below the nozzle exit. Its proper location might be conjectured from quantitative 
velocity or temperature measurements at the nozzle exit. However, this was not 
attempted and the seriousness of this problem is not known. 

This collection of data shows interesting characteristics when compared with 
computed stability characteristics. The jet shown in figure 15, for Re, = 138 
(R  = 30, for flat profile), is very buoyant and is more like a point-source plume 
than a jet. Note that N.C. also corresponds to A,/& = 2 for this Reynolds 
number, Neither frequency nor amplitude have appreciable effects. Jet  break- 
down always occurs about 5 in. downstream and the transition zone is not well 
defined. This is consist<ent with our calculations for non-buoyant jets since at 
R = 30 the amplification rates are very small. The large undulations seen are 
clearly not in a linear range. The initial instability is probably entirely a plume 
mode. 

The jet of figure 16, for Re, = 250 ( R  = 54), is less buoyant, but still is very 
buoyant. This jet is calculated to be subject to much higher amplification rates. 
The flow undergoes transition earlier and the location is more clearly defined. 
The ribbon lies approximately at  the lower branch of the neutral curve for these 
frequencies. 

The jet of Re, = 316 (R = 68) in figure 17 has still less relative buoyancy, 
Although this flow has higher momentum, the reduction in buoyancy apparsntly 
inhibits transition, except at higher frequencies, for which disturbances are 
Calculated to undergo the same amplification over much shorter distances. Note 
that, at lower frequencies, the vibrator is below the neutral curve and at higher 
ones is in the unstable region. The higher frequency disturbances are not initially 
subject to damping and are seen to amplify very rapidly. 

This was further explored at a slightly higher Reynolds number Re, =5 370 
(R = 80) as shown in figure 18. The vibrator was raised 1 in. The vibrator is now 
in the calculated unstable region for all frequencies used. All disturbances seem 
to undergo immediate amplification. This observation and the one above, that 
disturbances introduced at values of /3 below the theoretical neutral curve are 
initially damped, seem to verify experimentally the existence of the calculated 
lower branch of the neutral curve. 

Data at Re, = 481 (R = 104) are shown on figure 19. Again the vibrator is 
always in the amplified region and disturbances of all frequencies are amplified 
very quickly. Note that transition occurs at  shorter downstream distances as 
the frequency increases. Similar behaviour is seen in figures 17 and 18. This 
agrees with our theoretical prediction that x20t  I/f. 
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Figure 20 is for Re, = 537 (R = 116) and a very low level of buoyancy. Transi- 
tion quickly occurs for no vibration and for all frequencies. We suspect that this 
vigorous flow was subject to  additional disturbances of large amplitude. These 
perhaps arose in the jet-production system a t  this high delivery rate. 

4. Summary and conclusions 
The effects of small amounts of thermal buoyancy on laminar jet flow had been 

previously determined analytically. The principal effects were found to be an 
increase in the axial component of the velocity and a thinning of the jet by the 
change in pressure field which resulted from this alteration of the velocity, The 
magnitude of these effects is small but the trends are clear and are consistent with 
physical reasoning, and with the observations of McNaughton & Sinclair. 

The hydrodynamic stability of laminar jets has been investigated both 
analytically and experimentally, including some effects of buoyancy. The non- 
buoyant jet stability equations were solved numerically using the proper 
boundary-layer base flow for both symmetric and asymmetric disturbances. It 
was found that asymmetric (n = 1) disturbances are amplified over shorter 
distances as the frequency and Reynolds number increase. Calculated eigen- 
functions show the same characteristics as those found for other flows. Damped 
eigenvalues correspond to  more ‘flowery ’ eigenfunctions, simpler ones are found 
for conditions near neutral. Consequently, the disturbance shear stress is less 
well behaved as a, > 0. 

We did not find a neutral curve for symmetric (n = 0) disturbances. Such a 
curve was found for the fist asymmetric (n = 1) one. This is consistent with the 
inviscid results of Batchelor & Gill in that neutral or amplifying disturbances 
were not found for n = 0.  Our computed neutral curves (disturbance wave speed, 
frequency and wavelength) approach the neutral inviscid asymptotes of 
Batchelor & Gill at large R. The neutral curve found by Kambe for a ‘dis- 
continuous parabolic ’ profile lies at  lower R than that calculated here using the 
proper velocity profile. This less stable condition is perhaps due to the discon- 
tinuity of the parabolic profile. 

Spacewise amplification characteristics were determined. Then the effect of 
jet buoyancy on stability was determined from the coupled stability equations 
for very small amounts of buoyancy and the neutral stability curve was found to 
lie at slightly lower R (for the same p). This amount of buoyancy slightly 
destabilizes the flow. The stability of the extreme case of buoyancy in an axi- 
symmetric flow, the point-source thermal plume, was then determined for u = 2. 
From figure 8, the neutral curve is seen to lie at  even lower R = ( i c y ) *  than that 
of the jet. Even though these results lie below the applicable range of boundary- 
layer theory, they indicate that large buoyancy effects drastically destabilize 
the flow. The stability predictions for plume flow are consistent with previous 
results for plane plumes. We conclude that the buoyancy mechanism of energy 
exchange between the base flow and disturbances is very important in jets having 
large buoyancy. 

The destabilizing influence of a large level of thermal buoyancy was also 
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observed experimentally. Our experimental laminar-length (transition) observa- 
tions for jets show that increasing amounts of aiding thermal buoyancy cause the 
jets to undergo transition at much shorter donstream distances. The data were 
found to correlate with our theoretically determined buoyancy perturbation 
parameter. 

Controlled disturbances were introduced into jets having different and large 
amounts of buoyancy. Such flows have not yet been analysed and, therefore, no 
stability predictions are possible. We do not yet even know the paths such 
disturbances follow on a stability plane. 

Although our experiments do not strictly simulate the conditions of non- 
buoyant jet flow, the results are at least consistent with stability theory. The 
experiments tend to support the existence of a lower branch of the neutral curve. 
They also indicate that transition to turbulence occurs at  very much lower values 
of the amplitude ratio than for the natural convection adjacent to a vertical 
surface. This is consistent with findings for another free-boundary flow previously 
studied, the plane plume. We also found that highly buoyant jets apparently 
undergo transition by a non-jet mechanism which is presumably more like that 
to  which a point-source plume is subject. 

The exact size of the amplitude ratio where one might expect turbulence mighb 
depend on the size of the disturbance and the point of its introduction. Never- 
theless, we found that the jets having small buoyancy became turbulent for 
calculated non-buoyant amplitude ratios of about 4. This is also a test of the 
predicted effect of disturbance frequency. We found that transition occurs at 
shorter downstream distances as the frequency increases. In  addition, we found 
that symmetric disturbances did not amplify, in accordance with the predictions 
of theory. 
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Appendix A 
Consideration of the buoyancy perturbation parameter E ( X )  indicates that the 

relative magnitude of the buoyancy force compared with that of the momentum 
force increases downstream; recall that ecc x2. Thus, a round buoyant jet will 
tend to assume the characteristics of thermal point-source plumes downstream. 
The point-source plume, therefore, is the limiting case of a buoyant jet. Because 
of this, some consideration will be given to the thermal point-source plume. 

The point-source plume was analysed by Schuh (1948) using boundary-layer 
approximations for a = 0-7. Closed-form solutions were found by Yih (1951) for 
a = 1 and 2. The basic governing equations and boundary conditions for the 
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point-source plume are the same as for a round jet. For the plume, momentum 
flux is not conserved. However, if there are no heat sources in the flow field, the 
following heat-flux condition applies: 

A similarity analysis proceeds by taking 7 = yb(x), @ = c(x)f(v) and d(x) = to - t,. 
The x functions are determined as 

b(z) = (iGrx, Ato) t / z s  (A 2) 

c(x) = x ,  a($) = Nx-1. (A 3)) (A 4) 
The governing equations become 

(q+’+af+)’= 0. (A 6) 
By comparing these equations with those for a jet, it can be seen that the only 
difference is in the second term on the right-hand side of (A 5 ) .  Note also that the 
7’s are different. From (A 6 )  for Q = 2 we have 

4795 = f’”% (A 7) 

f(T) = vw + *v2) (A 8 )  

and +(7) = (1+hJ2)-4.  (A 9) 

This makes (A 5 )  the same as that for a non-buoyant jet. The plume solutions are 

Consequently, the point-source plume and the round jet have the same 
non-dimensional velocity and temperature fields for v = 2. The stability analysis 
proceeds as before with the exception of the characteristic quantities. For the 
plume, they are 

Lc = x/(kGx, Ato)‘, 

v, = w%, * to ) f /x ,  

(A 10) 

(A 11) 

T, = t,-tm. (A 12) 

The stability equations for the point-source plume are identical to those for the 
buoyant jet for v = 2, if we consider 

= Ato)’ (A 13) 

and E = 4. (A 14) 
Note that (A 13) and (A 14) are a direct consequence of (A 10) and (A 11). 

The computer programs for the stability of a buoyant jet are used for the 
point-source plume by taking Q = 2 and E = 4 and neglecting the E corrections 
to the base flow. This was done and a portion of the neutral curve for a point- 
source plume with Q = 2 is shown on figure 10 for the mode n = 1. Note also that 
the non-buoyant jet ( E  = 0) stability results are exactly the same as those for the 
point-source plume for v = 2 if coupling through buoyancy is neglected. From 
(A 10) and (A 11) the lines of constant physical hquency are given by 

BK (iG.Z, to)&* (A 15) 
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These are represented by a family of straight lines passing through the origin on 
a /3 0s. (&Grz, at,)) plot. This is similar to the line-source plume result of Pera & 
Gebhart (1971) (andthe jet result discussedabove)in that convected disturbances 
traverse the unstable region to emerge again into stable conditions. The jet flows 
with considerable buoyancy are much more complicated. The lines of constant 
physical frequency are thought to lie between the two limiting cases of non- 
buoyant jets and point-source plumes. 

Appendix B 
The base for the pumping apparatus is a 9 x 48in. steel channel upon which 

thevarious componentswere mounted. A&h.p., llOV, 60cycle,a.c. synchronous 
motor operating at 1800 r.p.m. was connected to a positive-drive reversible gear 
box. The output from the gear box could be continuously vaned between 0 and 
400 r.p.m. This rotary motion was used to turn a 1 in. heavy-duty micrometer 
head. The micrometer was fixed to the channel base at one point but a collar 
dowed it to  slide at the point of attachment to the gear box. The rotary motion 
of the gear box was converted to linear displacement at  the rate of 2Tin. per 
revolution as the micrometer rotated. This pushing apparatus was mounted on 
foam-rubber supports and placed in an adjacent room to minimize vibrations. 

The micrometer pushed a 2iin. diameter hydraulic cylinder by means of a 
point-contact mounted ball bearing. This cylinder was connected to a g i n .  
diameter hydraulic cylinder by means of flexible high pressure hose. A special 
blend of silicone oil was used as a working fluid and the hose was slightly coiled 
and clamped to the wall to eliminate vibrations. Air was removed fiom the 
hydraulic lines by means of bleeder valves. The smaller cylinder was mounted on 
a 3 in. aluminium channel near the test section and had a stroke of about 6 in. 
It was connected to a 30 ml glass hypodermic syringe. The syringe was connected 
with a glass tee to both a controlled-temperature bath and the nozzle of the jet, 
with teflon tubing. Two check valves were used. When the syringe was loading 
with hot water it did not draw water from the test section but from the heated 
bath. During jet discharge into the test chamber, backflow into the hot water 
bath was prevented by the other check valve. 

The driving part of the apparatus was equipped with adjustable micro- 
switches which are tripped when the micrometer is at  its extremes of movement. 
The gear box had both forward and reverse as well as a neutral position, and 
could be set by moving a lever. Electromagnets were attached to  this lever so 
that all three positions codd be set by remote control. The gear box was designed 
to go from any of the three positions to any other while operating. When the 
apparatus was initially turned on the gear box was in neutral and set at a desired 
speed between 0 and 400r.p.m. When the proper button was pushed, the gear 
box was put into reverse and the rotation was such that the syringe drew hot 
water into the tubing. Compressed air was used to push the cylinder back as the 
syringe loadedsince the point-contact mounted ball bearing cannot pull back the 
large cylinder. When the micrometer reached the end of its stroke (i.e. the 
syringe was loaded) a microswitch was tripped and released the air pressure by 



398 J .  C .  Mollendorf and B.  Gebhart 

means of a three-way solenoid valve and at  the same time threw the gear box 
into a forward gear. At this time there was flow through the nozzle. The jet flow 
continued until the micrometer tripped the other microswitch, which threw the 
gear box into neutral and thus ended the cycle. The entire cycle was repeated 
by simply pushing the start button. A motor was connected to  the speed control 
shaft of the gear box and so the flow rate (and thus the Reynolds number) was 
continuously adjustable by remote control. 

The angular velocity of the micrometer was measured by using a photodiode 
and a collar with 30 evenly spaced holes drilled around the circumference. 
A focusing light bulb was placed on one side of the collar and the photodiode on 
the other. The diode was placed in a circuit with a resistor and battery in such 
a way that an electrical signal was generated as the holesin the collar chopped the 
light. The motion between two successive signals corresponded to &j of a revolu- 
tion of the micrometer. 

The Reynolds number was calculated to be 

where Re, is the nozzle exit Reynolds number based on the average velocity, 
T is the number of threads per inch of the micrometer, D, and D, are the 
diameters of the large and small cylinders, respectively, D, and Di are the dia- 
meters of the syringe and jet nozzle respectively, and s2 is the angular velocity. 
The fixed dimensions of the apparatus are as follows: T = 40 threadslin., 
D, = 2-25in., D, = s i n .  and D, = 0~923in. For water at  100'3' and for a gin. 
nozzle diameter this relationship reduces to 

Re, = 30*7N, (B 2) 

where N is the number of impulses per second. The impulses at  the photodiode 
were counted with an EPUT meter using a typical gate time of 10s. The signal 
was also observed using an oscilloscope and found to be essentially a square wave. 
The uniformity of the motion was checked by recording the signal on an Ofier  
recorder for the entire length of the cycle. Although the amplitude of the signal 
varied slightly, the frequency remained constant. Photographs of the various 
components of the experimental apparatus are shown in Mollendorf (1971). 
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(0) ( b )  

FIGURE 12. Naturally occurring brrakdown for (a)  Reu = 138 (R = 30), 1, = 101 "V, 
t ,  = 82 O F  and (6) ReD = 250 (R = 54-2), ti = 107 OF, t ,  = 81 "E, D = t in. 
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Fi'lc:urts 13. Naturally occurring breakdowu for (a)  Reo = 250 (11' = 54.2). t ,  = 107 Ol', 
t ,  = 81 "P, I> = 1 in. and (h )  lZeu = 370 (R = 80), t ,  = 101  OF, t ,  = 81.2 OF, D = A in. 

JIOLLE9L)OHI~' A N D  GEBHdlZT 



Journal of Bluid Mechanics, Vol. 61, part 2 Plate 3 

(4 ( b )  

FIGURE 14. Naturally occurring breakdown for (a)  Reo = 537 (R = 117) ,  t j  = 85 "F and 
( b )  Reo = 855 ( R  = 185), ti = 116 O F .  t ,  = 82 "F, D = k i n .  
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FIGURE 20. Response to artificinlly iritrotlncctl dlstlwbuuccs for Re,) = 537 (12 = 117) ,  
t ,  = 85 "F, t ,  = 82 "V,  D = in.  
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